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ABSTRACT 

A form of Maxwell '  s moment method is used to obtain constitutive rela- 

2 tions for strees and heat flux for a gas passing through a shock wave. The cx 

moment of the Boltzmann equation together with several physical approximations 

a re  used to obtain a nonlinear expression relating s t ress  and deformation rate, 

with Mach number as a parameter. It is shown that the constitutive relations 

for both stress and heat flux reduce to the Navier-Stokes relations for the case 

M = 1 and IT/P[ << 1, and differ from these relations by as much as a factor 

of two for IT/PI  = 1. Theoretical density profiles for shock-wave Mach numbers 

between 2.8 and 8 a re  compared with experimental data from shock waves in 

argon and the agreement is shown to be excellent, thus supporting the use of the 

proposed constitutive relations. The physical significance of the approximations 

used and areas for further improvement in the theory are  discussed. 
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I. INTRODUCTION 

An important step in the application of the moment method employed by 

Mott-Smith to analyze shock structure, and which was later extended by Lees 

to treat problems in rarefied gas dynamics, is the selection of an approximate 

functional form for the distribution function" '- The functional form selected 

must satisfy physical requirements imposed by boundaries and possess sufficient 

flexibility, in the form of free parametersp to satisfy a desired number of moments 

of the Boltzmam equation. The power of the method reside! in the fact that for 

situations involving extreme translational nonequilibrium one can often construct 

a distribution function, relying mainly on-intuition and a physical understanding 

of the problem, which is a better approximation to the actual flow than one 

obtained through a more rational approach such as  the Chapman-Enskog procedure. 

Mott-Smith' s bimodal distribution and Leeel two-sided Maxwellian are well- 

known examples of distribution functions constructed on this basis. 

A useful interpretation for explaining the effectivenees of this particular 

approach to Maxwell's moment method is that it provides, in effect, a mechanism 

for closing a set of momente of the Boltzmann equation by expressing. the unknown 

higher order moments in terms of the "known" lower order momenta through the 

3 assumed form of the distribution function. 

(or <cx>) is the unknown moment in the Mott-Smith solution to the shock- 

For example, the moment <cx> 

4 

structure problem and the 

3 <c > in terms of the lower order moments, i.e. 
X 

modal dietribution allows one, in principle, to express 

gas dynamic variables. 
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Since the specific information needed to close a set of moments of the 

Boltzmann equation is one or more particular higher order moments of the 

distribution function, this raises 'the following question: Is it easier to guess the 

moment needed, e.g. <c >r or to guess the distribution f and then compute the 

moment needed? For problems such as Couette flow or  heat conduction in a 

rarefied gas, the latter is probably most likely true since solid surfaces play 

such important roles, and it seems natural that processes occurring at a surface 

should enter directly into the assumed form for f. For the shock-structure 

problem, there is reason to believe the former is true because of the absence of 

3 
X 

3 solid boundaries and because of the fact that one of the unknown moments ax> 

is directly related to physical quantities in the flow; and, as will be seen below, 

one can therefore estimate this moment rather well without having to select an 

approximate f. 

The aim of this paper is therefore to present an analysis of the shock- 

structure problem with a basically different emphasis on the Maxwell moment 

method than that employed by Mott-Smith In fact, the aim is to show that for 

steady, one-dimensional flow one can close the set of moments of the Boltzmann 

equation, at the "Mott-Smith" level of approximation, by approximating the 

unknown moments directly rather than approximating f. The primary reason 

for emphasizing this approach is that one arrives at new constitutive laws for 

stress and heat flux, which replace the Navier-Stokes relations a and consequently 

all of the advantages that accrue from the continuum description of a gas are 

retained. In addition, it becomes possible to see directly the physical significance 
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of the solution and specifically where the analysis could be improved, in con- 

trast to previous solutions where the outcome of the analysis is simply a shock- 

wave profile for specific assumptions. 
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11. MOMENT EQUATIONS 

For a steady, one-dimensional situation, the "first" five moments of 

the Boltzmann equation are given by 

d -(pu) = 0 
dx 

d 1 2  -[pu(h +? ) +(q -TU)] = 0 dx 

d 3  2 
- - p a  >=mA[cx]  d x x  

d 2 2  2 - p a  c > = m A [ c  c 1, d x x  X 

where p, p, h, U,T and q are the standard gas dynamic variables, m is the 

2 mass of the molecule, A[cx] represents the c2 moment of the collision 
X 

integral, and c is the molecular speed in the x-direction (the direction of 
X 

flow). The terms in Eqs. (Id) and ( le )  arising from the collision integral can 

be expressed in terms of T and q for Maxwell molecules , i. e . ,  3 

where the constants describing the intermolecular potential have been replaced 

by the coefficient of viscosity p, as defined by the Chapman-Enskog procedure. 
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This simplification is frequently used in the approximate theories of rarefied 

gas dynamics. 

In order to show where the present work could be generalized in the 

discussion below, by removing the restriction to Maxwell molecules, it is 

convenient to define here the quantity T* by the relation 

mA[c 2 E  ] =  T*. 
x v  (3) 

Use of Eq. (3) will therefore preserve the algebraic form obtained for Maxwell 

molecules since T* = T in that case. In general, one would have to obtain the 

relation between T* and T (and possibly other variables) for a particular inter- 

molecular potential. 

Equations (1) and (2) together with the relations for a thermally and 

calorically perfect gas 

p = pRT (4a) 

h = c  T ( 4b) P 

do not form a 

equations (7) ; 

complete set of equations since there are more unlmowns (9) than 

that is, the moments <c > and <c c > are the extra unknowns. 3 2 2  
X X 

If the approach used by Mott-Smith were pursued at this point, then the extra 

unknowns would be evaluated from an assumed distribution function. Rather than 

follow this approach, let us first consider the information contained in Eqs. (Id) 

and (le), 

Using the relations for Maxwell molecules (2a) and (2b), we have from 

(Id) and (le) 
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d 3  
P d X X  
1 1 7 = - p < c  > 

d 2 2  

Since T is determined by (sa) therefore q is essentially determined by (5b). If 

3 2 2  the moments <c > and <c c > could somehow be expressed as functions of the x X 

gas dynamic variables, it is clear that Eqs. (5) would yield constitutive laws for 

s t ress  and heat flux. It is therefore desirable to preserve the identities of (5a) 

and (5b) during all algebraic manipulations in order to identify the resulting 

constitutive relations , and in addition, to remind one that all approximations 

introduced will affect only these relations. Once these relations are  established, 

it is a simple procedure to compute shock-wave profiles with the complete set of 

equations and thereby check the approximations used by comparing the results 

with experimental data. 

Since Eq. (5b) is an equation for the heat flux q, it would seem that sa 

far better approximation for q than that obtained by guessing f and computing 

2 2  <c c > would be to assume the total enthalpy is conserved within a shock-wave 
X 

profile and use the energy equation (IC) to obtain 

q =Tu ( 6 )  

4 Equation ( 6 )  has been shown by Liepmann, Narasimha, and Chahine to be an 

excellent approximation for the Navier-Stokes equations, and Sherman and Talbot 

have shown the approximation is very good for several continuum theories as well 

as for the Mott-Smith solution. Here we will assume Eq. (6) holds in general and 

rely on the comparisons given below to justify this selection. 

5 
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Using the energy equation consistent with (6) and the notation defined by 

(3), the set of equations given by (1) becomes 

d 1 2  --(h+p ) = 0  dx 

q = m .  (7e) 

Displayed in the above form, we see that the constitutive laws for stress and heat 

flux must arise from Eqs. (7d) and (7e) respectively. In fact, one should expect 

to recover the Navier-Stokes relations 

o 4 du 
3 d x  

T =-p- 

0 dT 
dx 

q =-k- 

from these two equations as the strength of the shock wave approaches zero, i. e. , 

as the Mach number approaches unity. The nature of this limit process is not 

obvious when inspecting Eq. (7d); however, the expression can be cast in a form 

for which the limit process becomes evident immediately. This can be seen if 

we express cc > in terms of a central moment <V >, where V is the thermal 

speed given by 

3 3 
X x X 
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(9) v = c  - u .  x x  

If we then let M -31 and f - t f (O) ,  where f"' is the Maxwellian distribution, 

<V > becomes zero since f"' is an even function of V and <V > is an odd 

moment, Therefore the remaining terms in Eq. (7d) must reduce exactly to (sa). 

S 

3 3 
X X X 

A .  Expression for <c 3 > 
X 

3 3 The relation between <c > and <V > can be found directly from the 
X X 

definition (9),  i. e. 

3 3 c = (Vx+u)  
X 

and 

3 3 2 3  <e > = <v > +3u<v > + u  , 
X X X 

since by definition <V > = 0. Recalling that the x-component of the pressure 

tensor is defined to be 

X 

2 
= p<v > = p -7, pxx X 

the above relation becomes 

3 Equation (10) shows that <c > can be split into a sum of two parts, a central 

3 moment <V > and terms involving gas dynamic quantities. 

X 

X 

Differentiating Eq. (10) with respect to X, expanding the right hand 

side, and using the continuity and momentum equations, (7a) and (7b), one obtains 
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Substituting this expression into (7d) and using the relation a2 = 

isentropic speed of sound in a mmatomic gas, we have 

E for the 
3 P  

5 2 d u a d  3 
3 dx pdx T* = [3(1 - T/P) - -M &-- -7 <VXb 

where M is the local Machnumber. The only difference between (7d) and (11) 

is that <c > has been replaced by the central moment <Vx>, otherwise both 

equations are  exact. 

3 3 
X 

The limit value for T* for a weak shock wave can now be found from 

Eq. (11). When the shock Mach number is very close to one, the local Mach 

number M is very nearly unity throughout the shock wave, T/P is much less 

3 than one, and cV > is nearly zero. 

I I  
Therefore the right hand side of Eq. (11) 

X 

reduces to $d" 
3 dx' 

which is precisely the Navier-Stokes expression. For a 

general molecular force law, it is not clear that T* would also reduce to T for 

M = 1, but at least for Maxwell molecules it is certain that Eq. (11) yields the 

Navier-Stokes relation (8a). 

S 

This result immediately suggests that Eq. (11) could be quite useful for 

constructing an approximate expression for T* for larger Mach numbers. The 

assumption <V > = 0 gives a very good result for M near one; thus any 

3 maRonable approximation to <V > should improve the expression, at least for 

a certain Mach number range. Here we can also see an advantage in using 

Eq. (11) over Eq. (7d) if we were to apply Mott-Smith' s approach at this point 

by guessing a suitable f. That is, the entire expression for T* in Eq. (7d) 

3 
X S 

X 
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would be approximate whereas only a part of the expression for T* in Eq, (11) 

would be approximate, and it would only be a minor contribution if  M 

one. In a certain sense one can view the correction as arising from a perturba- 

tion to the shock Mach number from unity. 

is near 
S 

A further inspection of Eq. (11) shows that it, unfortunately, is not well 

behaved for all M 

stream part of the shock wave for M = = 1.34. Therefore for strong 

shock waves the contribution to T* due to <V > becomes very important to the 

total expression and it no longer can be considered as arising from a small 

since the term in square brackets becomes zero in the up- 
S9 

5 

3 
X 

perturbation. 
I 

It is of interest that the critical Mach number predicted by Eq. (ll)$ 

3 when the term involving <V > is ignored, is close to the critical Mach 

numbers for the various continuum theories; e. g. , Sherman and Talbot report 

X 
5 

that solutions of Grad's thirteen-moment equations are  limited to the range 

1 5 Ms 5 1 .65  and aolutions to Burnett' s equations are  limited to the range 

1 5 M s  5 2.1. In view of the fact that difficulty has been encountered with many 

schemes, for even moderate Mach numbers, it can be seen that an approximation 

for <V > must be chosen with care. 3 
X 

3 B. Approximation for <V > 
X 

3 Before proceeding with approximate schemes for evaluating <V >$ the x 
3 physical interpretation of p<V > should be stressed. 

x-component of the heat-flux vector, we have 

Using the definition of the 
X 

1 0  



1 2 
2 x  q = - p < v  v >. 

Obviously for a one-dimensional flow, such as a shock wave, only the x-component 

of the heat-flux vector is nonzero, However, this single component q can be 

split into two parts, if we define q I 8  and qA by the relations 

1 3  
2 x  q" = -p<v > 

1 2 2  
X Y  z 

qA= ?<V (V +v )>. 

We can then speak of the parallel and perpendicular parts of the heat flux q; 

thus our problem requires an approximation for the parallel part of the heat 

flux as shown by (11) and (13a). 

Since q, q", and q' have identical dimensions, it is convenient to define 

the nondimensional quantity 

Q = q''//q, (14) 

which exhibits the ratio of the parallel part to the total heat flux q. If Q is 

3 assumed given, then <V > is obtained from Eqs. (13a) and (14), i. e. , 

p<V > = 2qQ. 

The reason for introducing the ratio Q becomes apparent once one 

X 

(15) 
3 
X 

evaluates the quantity for the Chapman-Enskog distribution f"). For this case 

we have 

Q = 315, (16) 

i. e. Q is strictly a constant everywhere in a flow field. The Maxwellian 

distribution f(O' can be viewed as giving the ?'zerothff approximation to <V > 

11 
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which is zero; and here f(') yields what can be considered to be the "first" 

approximation, i. e. , 

3 6  
p<vx> = 9. 

Since q in a certain sense varies like dT it is easy to see that the 
n dx' 

du 
dxg 

while the first term is -a thus it makes d" T second term in (11) is essentially - 
dx2 

sense that the second term should vanish first for weak shock waves as discussed 

above. 

It is a straightforward procedure to substitute (17) into (11), use approxima- 

tion (6), and obtain a new expression relating stress and deformation rate for a 

gas passing through a shock wave. The algebraic effort is reduced considerably 

if the following substitution is carried out first 

1 3 - 1  d ~ d u + u d ~  - ----Tu=--  
P d x  Pdx Pdx Pdx '  

d-r where - is obtained from the momentum equation (7b). This leads to the dx 

useful result 

However, it should be remembered that (18) is only an approximate relation 

since (6) was used in its derivation. 

3 
Using Eq. (18) together with the Chapman-Enskog value for p<Vx> given 

by (17) and substituting into (11)9 the "first" approximation for T* is found to be 

given by 
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Here again, we see that for M = 1 and << 1 the limiting value of T* 

i5 Gd" However, for this approximation the critical Mach number is given by 

S 

3 &* 

M =  = 1.96, 
S 

which is an improvement over the previous value, but it is still not very exciting. 

The simplest generalization to the Chapman-Enskog value is to a s s m e  

Q is still a constant but that it takes on a different value cy9 the value being 

determined by the vanishing of the critical Mach number. Following the same 

substitution as above, we now have 

2 For CY = 5/6 the coefficient of the M term becomes zero and the expression 

no longer exhibits a critical Mach number. Our new approximation is then 

Q = 5/6, (20) 

and we obtain a new law relating s t ress  and deformation rate given by 

A more symmetric form of the equation is given by 

0 
7 =T*/(1 -T/P), 

0 where T is the Navier-Stokes value (sa). 

For Maxwell molecules T* = T and Eq. (21) together with (7c) and (7e) 

yield the extremely simple constitutive relations 
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0 
q = q/ ( l  - TIP), (22b) 

where in the second equation we have assumed pc /k = 3/4, consistent with 

approximation (6)# in order that the Navier-Stokes relations are fully recovered 

for small values of' T/P e 

P 

I I  
A plot of Eq. (22a) is presented in Fig. 1, where the dimensionless strain 

rate ~ ' / p  is plotted against the dimensionless stress r/p. Since T/P is always 

a negative number in a shock wave, only one quadrant of the coordinate system 

is shown in the figure. The upper limit on the value of IT/P/ is well defined as 

4 discussed by Liepmann, Narasimha and Chahine ; i. e. , as a result of the 

definition of T/P kinetic theory limits its value to -2, and manipulation of the 

momentum equation shows that its value is limited to -3/2 which occurs for an 

infinitely strong shock wave. The figure therefore shows that the values of 

-TO/* predicted by Eq. (22a) are always less than the Navier-Stokes values and 

the ratio to the Navier-Stokes value reaches a minimum of 2/5. Consequently, 

shock wave thickness as predicted by (22a) should be greater than that predicted 

by the Navier-Stokes relations. 

Although the constitutive relations (22a) and (22b) are remarkably simple, 

which suggests a certain validity in itself, it is appropriate to question the 

approximation (20) in view of the disagreement with the Chapman-Enskog value, 

Q = 3/5. However, since the Chapman-Enskog value is in effect the result of a 

special limit proeess, it' s quite conceivable that other values could be obtained 

for other conditions. 
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For very large shock Mach numbers, the flow at the upstream end of a . 

shock wave where significant molecular collisions first begin to occur is akin 

to a molecular beam, because of the developing difference between the parallel 

and perpendicular components of the thermal motion of the molecules. If we 

consider an actual molecular beam as an example, for which <V > # 0 and 

<V > = 0, then definitions (13a), (13b) and (14) show that Q takes on its 

maximum value for this case and its value is given by 

2 
X 

2 
Y 

t 24) 

= 0. Likewise the definition shows that the absolute minimum value of 

Q would be zero. Therefore one would expect Q to assume values between these 

two extremes in an actual flow field. 

In fact, it would even be difficult to imagine that Q could be less than P/3 

in a shock wave, since this would mean that the transport of energy associated 

with each transverse degree of freedom exceeds the transport of energy associated 

with the parallel degree of freedom. If the value 1/3 is truly approached some- 

where in a shock wave, it seems reasonable to expect to find it at the subsonic 

end of a strong shock wave where the Mach number is low and the distribution 

function loses its preferential direction. , 

Likewise, the upper limit Q = 1 is probably not attained in a shock wave 

since the upstream portion iss never precisely a molecular beam regardless of 

how large Ms becomes; and it is quite possible that the requirement that the 

critical Mach number vanish in Eq, (PI), which led to the result Q = 5/6, in 

fact selects the maximum permissible value of in a shock wave. 

If we now assume that Q lies in the range 
15 



(25) 

with large values on the supersonic side and small values on the subsonic side of 

a shock wave, it becomes clear that the Chapman-Enskog value Q = 3/5 could 

very likely be the proper value for the portion of the flow where the local Mach 

number is unity. 

The next level of approximation to (15) is therefore to establish a functional 

form for Q beyond merely a constant. To do this one must identify the important 

independent variables entering the expression for Q. We have already suggested 

'' that the Mach number is important is arriving at (25). The constitutive relations 

show that T/P is a very important quantity in a shock wave, so it is likely that it 

too is an important variable in expressing Q. If we chose to add to this list the 

second Chapman-Enskog parameter q/pa, we find however that it is not a new 

variable in a shock wave, since i t  is a combination of M and T/P, i. e. e 

q/pa = d p a  = (T/P)M. (26) 

Since Eq. (26) lists the most important variables in a shock wave, it is reasonable 

to assume that a suitable approximation would consist of the following expression 

Q = Q(M,T/P), (27) 

with (25) setting the upper and lower limits on Q for all M and T/P. 

Several important details concerning the functional form of Q could now 

be established by substituting (15) into (11), using the assumed form (27), and 

studying the various limits of the resulting expression. With this information, 

a particular algebraic expression could be chosen for (27) (this would be equivalent 

to choosing f);  and thus an improved approximation for T* would then be obtained. 
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The important feature of this approximation would be that T'/P would depend on 

both T/P and M (or q/pa) rather than merely on ~ / p  as  given by (22a); this 

would be the first level of approximation at which the constitutive law for stress 

would also depend on the heat flux 

situation. Since the algebraic details for this case can become involved, it is 

q, as one would expect in a nonequilibrium 

appropriate to defer this discussion and first obtain a prediction of shock-wave 

profile based on the simpler constitutive relations (22a) and (22b). 
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111. SHOCK-WAVE STRUCTURE, Q = 5/6 

"he constitutive relations (22a) and (22b) were obtained using approxima- 

tion (6), assuming Maxwell molecules, a Prandtl number of 3/4, and the approxima- 

tion Q = 5/6. 

proximate constitutive relations for stress and heat flux for a gas passing through 

a shock wave, not to solve the full set of Eqs. (1). However, we can now return 

to the set given by (1) and replace Eqs. (Id) and ( le)  with the approximate rela- 

tions (22a) and (22b). In fact, since it is reasonable to assume that a material 

description of a gas cannot be very sensitive to the type of gas being considered 

(for example, the Navier-Stokes relations apply equally well to both monatomic 

and diatomic gases, as well to liquids), one can postulate that the above constitu- 

tive relations hold in general and solve the set for the appropriate viscosity law 

p(T), ratio of specific heats y ,  and Prandtl number Pr needed to describe the gas. 

The analysis to this point can be viewed as an effort to derive ap- 

Using this point of view, the appropriate set of equations to solve for shock 

structure is given by 

pu = m (28a) 

(28b) m(u - ul) t p  - p1 = T  

1 2  
2 m(h t-u - H1) = (TU - q) 

o 4 du 
3 d x  

7 =-p- 
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to which one would add (4a) and (4b) for a thermally and calorically perfect gas. 

In the above set, the first three equations are  integral forms of Eqs. (la) to (le),  

subscript 1 is used to indicate an upstream value, and p and k a re  assumed to 

be known functions of temperature. 

As a result of the fact that the above expressions for T and q yield the 

following relation 

To/qo = d q ,  (29) 

we will find that one can use exactly L e  same method to solve the above set as that 

discussed by Gillarg and Paolucci for the solution of the Navier-Stokes equations. 

In fact, Eq. (29) guarantees the same behavior at the upstream and downstream 

singular points for the solution in the T, u plane as that found by Gillarg and 

Paolucci for the Navier-Stokes equations. 

6 

Before proceeding with the analysis, it is quite useful to introduce an 

algebraic tracer as a coefficient before the -r/p term in both Eqs. (28d) and 

(28e) and then use the following scheme: If we set E = 0, the above set of 

equations become identical to the Navier-Stokes equations; and if  we set E = 1, 

we recover the set of 

Using the algebraic tracer E ,  we have from Eq. (28d) 

TO/P = (T/P)/(f - E d P )  = (m/pu)/(l - ETU/PU). 

Multiplying the momentum Eq. (28b) by u, to obtain an expression for TU, and 

defining the dimensionless variables T" = T/T1 and = u/u,, the above equation 
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can be written in the following form 

where 

2 e = [T - G(1 +YMB(l - G))]. 

Simplification of the equation for the two cases E = 0 and E = 1 is obviously 

straightforward. Likewise, from Eq. (28d), we have 

q0/pu = (q/pu)/(l - EdPU). 

Using the energy Eq. (28c) to obtain q and the momentum Eq, (28b) to obtain 

-ru, the above equation can be written in the dimensionless form 

(31) 
Y Y - 1  2 

Y - 1  2 s  

N 0 q /plul = T[8 +-(1 +-M (1 - G2) - '?)I/(? - €0).  

If we divide Eq. (31) by Eq. (30) to obtain the differential equation for the solution 

curve in the T, u plane, we see that the algebraic tracer E cancels out, i. e. , N N  

we obtain 

* I u  
Therefore the integral curve in the T, u plane is exactly the same as that for the 

Navier-Stokes solution. However the velocity gradient and the temperature 

gradient are  quite different for the two solutions as shown by Eqs. (30) and (31) 

for the two case8 E = 0 and E = 1. 

Once Eq. (32) has been integrated to obtain the universal curve ? = ?(;) 

for a particular combination of Ms9 Y and Pr, Eq. (30) can be evaluated to 
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obtain the dimensionless velocity gradient -ro/plMs, for either the present ' 

solution (E = 1) or  the Navier-Stokes solution ( E  = 0). Figure 2 presents a 

comparison of the two solutions for several different shock Mach numbers and for 

the case Y = 5/3, Pr = 2/3. The figure shows that the two solutions are nearly 

identical for M = 1. 5. However, they are quite different for the stronger shock 
S 

waves, with the present solution having a significantly smaller value for the 

maximum velocity gradient. It can be seen from the figure that most of the 

change occurs on the supersonic side of the shock wave (g = 1) with very little 

change occurring on the subsonic side. 

In order to generate a shock wave profile from the data in Fig. 2, it is 

necessary to specify the temperature dependence of the coefficient of viscosity p. 

Here we assume a power law dependence for the viscosity, p T , with 
w 

w = Q,75 (to represent argon as discussed below). Figures 3 and 4 give a 

comparison of several density profiles for the two solutions. The spatial 

variable x has been nondimensionalized by dividing by the upstream mean-free 

path length A1 = . The two profiles were arbitrarily matched at the 

subsonic side because of the suggestive appearance of the curves in Fig. 2. 

The figures show that the two solutions yield nearly identical results for 

Ms = 1 . 5  and the difference in the two profiles becomes greater as the shock 

Mach number increases. The increase in shock-wave thickness over the Navier- 

Stokes value shown by the present solution is definitely in the proper direction 

for agreement with experimental results, However, we also see from Fig. 4 

that considerable asymmetry develops in the predicted density profile for the 
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larger values of M ; and this is not in agreement with experimental results. 

If a detailed comparison is made with experimental density profiles, one finds 

that the present solution lies too close to the Navier-Stokes solution at the 

subsonic end of the shock wave, i. e. 

relations require further corrections for I T/P] small. 

S 

we must conclude that the constitutive 
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IV, EXTEPJ§ION, & = Q ( M )  

The first step beyond the approximation Q = 5/6 must include the most 

important functional dependence in the representation for Q. The discussion 

leading to Eq. (27) suggests that M and T/P are important variables in repre- 

senting Q, but no judgment was made as to which variable is the most important. 

By assuming initially that both must be included, we can arrive at an equation, 

Eq. (36)8 which will show that the functional dependence on M is far more 

essential than the dependence on T/P., 

Assuming the representation Q = Q(M, T/P), the x-derivative of the 

product q& is given by 

where Q and qIp are partial derivatives with respect to M 'and T/P re- M 

spectively. Using the definitions for M and the isentropic speed of sound a, 

we have 

dM d u  1 d u  u d 
dx d x a  a &  2dx  
---- - ( ) = - - - - -  

a 

which by virtue of the continuity Eq. (28a) allows one to write 

Multiplying the momentum Eq. (28b) by u and using approximation (6) together 

with Eq. (18)9 the above expression becomes 
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Similarly for the x-derivative of T/P, we can write 

Following the same procedure as above for determining the x-derivative of pu, 

we have finally 

Using the derivatives given by (34) and (35) together with the expression 

derived in (18) for % &, Eq. (33) can be written as 

where the approximation q =TU has again been used. With the aid of definition 

(15) and the above equation, the expression for T* given by Eq. (11) yields the 

result 

Since [./PI I 3 / 2  for all shock Mach numbers and since in general 

0 
T* = T, therefore T*/T must be bounded; and this fact allows several important 

conclusions to be drawn concerning the functional form of Q. If it were assumed 
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that Q is a function of T/P alone, then the last two bracketed terms in Eq, '(36) 

would increase with M and +/TO would not be bounded. Therefore Q cannot be 

a function of T/P alone. However, i f  it were assumed that Q is a function of 

M alone, then it would only be necessary to require Q to vary like Mm3 for 

large M and T*/T' would be bounded. Therefore the dependence on M is 

necessary in the functional representation for Q, as long as Q is not a constant. 

Proceeding on the basis that Q = Q(M) is the appropriate generalization 

beyond the previous approximation Q = 5/6, Eq. (36) simplifies to read 

2 

M 

4T*/T0 = [(S - 6Q) - (5 - 6Q)M 2 J - [(g - 6Q) - 2QM(M 2 +3)M]T/p- (37) 

Returning to the requirement that T*/T' be bounded, one concludes from (37) that 

Q(M) must exhibit the following behavior for large M 

where 

lim 2 
M 4 0 0  

M [5 - 6Q] = c1 

lim 3 
M -e00 2' M Q M = c  

c and c are constants. If we further assume c 'and c2 are nonzero, 1 2 1 

the functional form of Q( M) for large M can be established in greater detail. 

In particular, Eq. (38a) shows that the difference [5/6 - QJ must vary like M-'. 

If in addition we agree that Q(l )  must be the Chapman-Enskog value 3/5 and 

that Q(M) is a monotonic function, we can write 

(39) 
2 

Q(M) = 15M2/(7 +18M ) 

as a reasonable approximation for Q( M) satisfying the cited requirements. 

It is obvious that Eq. (39) satisfies Eqs. (38a) and (38b) since 
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2 [5/6 - &] = 35/6(7 + 18M ) #  

-3 and therefore Q M which is required by (38b). In arriving at Eq. (39) it 

wag assumed that the simplest algebraic expression satisfying the above condi- 

tions would be adequate. 

M 

Figure 5 presents a plot of the function Q(M) defined by Eq. (39). The 

curve was not drawn for M c 1/2 since the minimum Mach number behind a 

shock wave in a monatomic gas is approximately 1/2. Although the proposed 

function has the correct behavior for large M (in the sense that c and c are 

nonzero), it is not obvious that it has the correct behavior near M = 1, which 

unfortunately cannot be determined with the information at hand. Of particular 

concern is the large variation exhibited by the proposed function about the 

Chapman-Enskog value, which possibly is a result of the simple algebraic 

expression chosen, 

1 2 

The validity of the approximation could be checked quite conclusively by 

including in Fig. 5 data obtained from numerical solutions of the Boltzmann 

equation or any suitable approximation thereto. The numerical data, however, 

would have to be obtained for a wide range of shock Mach numbers and from solu- 

tions for which the shock wave is accurately described in the wings of the profile 

(where the Mach number reaches either bounding valudin order to adequately 

check the proposed function. Numerical data in a preliminary form was very 

kindly made available to the authors recently by S. M. Yen who together with B. 

L. Hicks has used the Monte Carlo method to evaluate the Boltzmann collision 

integral for hard sphere ooBfi ions. The general trend of this preliminary data 
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has provided considerable encouragement for the use of Eq, (39)$ and in par- 

ticular it has helped to dispel certain misgivings which were originally held 

about the large variation in the function near M = 1 from the Chapman-Enskog 

value. (Because of the preliminary nature of the data, it was not felt that it would 

be appropriate to include these data in Fig. 5. ) 

Turning our attention back to Eq. (37) and using Eq. (39)$ we again find a 

relatively simple constitutive relation for stress, i. e. , 

0 
T = T*/(F - GT/P), 

where F and G are  functions of M given by 

2 F = (63 +37M )/4(7 + 18M2) 

2 4 2 2  G = 3(147 + 126M +292M )/4(7 + 18M ) . 
Constitutive relations for T and q can again be obtainec by assuming the gas is 

composed of Maxwell molecules and by following the same algebraic manipulation 

leading to Eqs. (22a) and (22b). It is of interest, and of importance to the 

development below, that the only change that occurs in Eqs. (22) is the quantity 

(1 - T/P) is replaced by (F - GT/~) .  Since F and G are bounded by the values 

1.57 2 F  20.357 

1.42 2 G 3 0.676 

for the Mach number range 0.5 5 M 5 0, one can see the modification is not 

one of a fundamental nature. 

The equation relating stress and deformation rate for Maxwell molecules 

obtained from Eq, (40), is plotted in Fig. 6 for fixed values of M. Here we see 

the Navier-Stokes relation is recovered only for the case M = 1 and k/pl 
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small. The fact that the Navier-§tokes relation is not recovered far upstream 

and far downstream from the shock wave where I-r/pl is small and M # 1 

comes as a surprise from both a physical and a mathematical point of view. This 

difference could, in part, be attributed to the approximation used for Q and the 

fact that the -r/p dependence was ignored. However, the difference appears in 

precisely the correct direction to remove the asymmetry from the shock-wave profile 

that was noticed in Figs. 3 and 4 with the simpler theory. This fact in itself is a 

strong argument in favor of employing the constitutive relation for stress as 

displayed in Fig. 6 and checking the accuracy with which the new theory can 

predict shock-wave profile. 

Since Eq. (29) still holds and Eq. (40) introduces M as the only new 

variable, the same method can be used to compute shock-wave structure with the 

new approximation as was discussed in the above section for the simpler theory; 

Eq. (32) is of course exactly the same and Eqs. (30) and (31) must be modified 

in a trivial manner to include the functions F and G appearing in Eq. (40). 

Figures 7 and 8 present the results of several such calculations for the 

density profile through a shock wave for the case Y = 5/3, Pr = 2/3, and 

w = 0.75. A suitable value of w for low temperature argon is 0.816 which has 

been used by a number of investigators since the work of Gillarg and Paolucci. 

If shock-wave profiles a re  to be computed for M I 10, then a value is need 

for a much greater temperature range. For the temperatures T 5 10,000 K, 

S 

0 

a suitable "average?? value appears to be w = 0.75, according to the calculations 

for argon by Amdur and Mason and the experimental data obtained by Camac 7 
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8 9 10 
and Feinberg Collins and Mennard and Willeke . The dashed 

curves appearing in the two figures a re  plots of experimental data for argon 

obtained by €3. Schmidt 11 using an electron beam densitometer and the 17-inch- 

diameter shock tube at Caltech. The theoretical and experimental density pro- 

files were arbitrarily matched at the point (p - p )/@ - p ) = 0.5. 1 2 1  

Two observations become immediately evident on comparing the theoretical 

and experimental curves in the figures. First, the theory predicts the experimental 

data rather well over the entire Mach number range from 2.8 to 8; and second, the 

theoretical profiles no longer exhibit the asymmetry that was present in Figs. 3 

and 4. A close inspection of the figures shows that the theoretical profiles a re  

slightly thinner than the experimental profiles in each case and the fi t  is slightly 

better for the larger Mach numbers, The value of used in the calculations 

could certainly be adjusted to improve the f i t  still further, especially for the 

lower Mach numbers, but in view of the uncertainty associated with the proper 

value of w for a wide temperature range in argon and in view of the further im- 

provements that could be incorporated in the present theory, it seems advisable to 

judge the theory on the basis of the present comparison alone, On this basis it is 

quite clear that the constitutive relation for stress exhibited in Fig. 6 is more 

nearly correct than that displayed in Fig. 1, and therefore any further improve- 

ment in the theory would probably yield resulte in closer agreement with Fig, 6. 

This again raises the very interesting question of why the Navier-Stokes relations 

are  not recovered far ahead of the shock wave and far behind the shock wave where 

the flow is nearly in equilibrium, since most physical arguments would tend to 

favor the opposite conclusion, 
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V. DISCUSSION 

In view of the favorable comparisons exhibited by Figs. 7 and 8, further 

work to confirm o r  improve the present theory would be clearly justified on the 

grounds that it would contribute to the macroscopic interpretation of the physical 

processes taking place within a shock wave. For example, it would be extremely 

interesting, from the point of view of continuum mechanics, to check the constitu- 

tive relation for s t ress  plotted in Fig. 6. This could be done with data obtained 

from numerical solutions of the Boltzmann equation or from calculations involving 

collisions between a finite number of particles, such as the work by‘Bird. l2 The 

calculations would have to be carried out for several different values of M 

since data corresponding to a single shock-wave profile would appear as a single 

loop in Fig. 6 ,  starting from the origin and ending at the origin, with the curve 

for M = 1 dividing the loop into two nearly-equal halves. Displayed in this form, 

the data should show a nonlinear dependence on T/P and a Mach-number dependence 

about the locus of points for M = 1. If Fig. 6 is approximately correct, the 

trajectory of each loop near the origin, for large values of M 

larger slope for the supersonic branch than for the subsonic branch. In terms of 

the present interpretation of p( T), this implies that the Navier-Stokes relation 

for stress does not apply at the two ends of a shock wave. 

S 

would have a 
6’ 

A possible resolution of the problem could come from a more careful 

treatment of Eq, (40), e. g., for IT/PI  c< 1 we have 
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0 4  du 
T* = FT = -Fp(T)- 

3 dx’ 

The procedure has been to assume Maxwell molecules (i. e., T* =T) and then to 

assume p( T) does not have to be restricted to the temperature dependence T 

characterizing Maxwell molecules; obviously the two sides of Eq. (41) are not 

treated equally in such a procedure. An important extension to the present work 

would therefore be to relate T* to T (and possibly q) for a general inverse- 

power intermolecular potential so that compatible expressions for T* and p(T) 

could be used; and thus physical interpretation of (41) would become more meaning- 

ful. 

Figure 5 would likewise provide a physically interesting area for comparison 

with numerical solutions. Namely, the quantity Q expresses the ratio between 

1) the rate of flux of thermal energy contained in the degree of freedom which is 

parallel to the direction of propagation of a shock wave and 2) the total rate of 

flux of thermal energy. This information is of course useful in constructing a 

picture of how the distribution function changes from an upstream to a downstream 

position. In the case of Fig. 5. , it would be desirable to determine whether the 

representation Q = Q( M,T/P) would be necessary or  whether the present approxima- 

tion Q = Q(M) is sufficient. 

A final check on the present theory would be to review the approximation 

q =TU, o r  equivalently H = constant, used in deriving the constitutive relations 

for stress and heat flux. The present approach is at least self consistent in that 

the maximum variation in the quantity (H - H )/H for all of the profiles shown 1 1  
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in Figs. 7 and 8 is about 2%. However, this is not surprising since the integral 

curve ? = ?(;) is the same as that for the Navier-Stokes solution, and therefore 

the relation H = H(G) should also be the same. 

The constitutive relation for stress has been discussed in terms of the 

independent variables T/P and M rather than the equivalent combination of 

variables T/P and q/pa (see Eq. (26)k because of the fact that one can recover 

the case M = 1 so much more easily, In terms of a physical description of a 

gas, it would seem that T/P and q/pa would be a more meaningful combination, 

since the velocity of the fluid does not appear in either variable. This raises 

the interesting possibility that the constitutive relations written in this form 

could also be applied to nonsteady, one-dimensional flows, e. g. , to study the 

reflection of a shock wave from a wall, to analyze the nonsteady development of a 

shock front, o r  to study the attenuation of ultrasonic waves in a gas. 
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Fig. 1. Relation between nondimensional stress T/P and nondimensional 
strain-rate ~ ' / p  (for Q = 5/6) compared with the Navier-Stokes 
relation. 
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Fig. 2. Nondimensional velocity gradient for the Navier-Stokes solution and 
for the present solution (for Q = 5 / 6 ) .  
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Fig. 3. Shock-wave density-profiles for Q = 5/6 compar d with the Navier- 
Stokes solution; Pr = 2/3,  Y = 5/3, and p T 3h . 
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Fig. 4. Shock-wave density-profiles for Q = 5/6 compared with the Navier- 
Stokes solution; Pr = 2/3, Y = 5/3, and p T3/4. 
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Fig. 5. Plot of the function Q(M) defined by Eq. (39). 
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Fig. 6. Constitutive relation for stress based on the approximation Q = Q(M), 
defined by Eq. (39). 
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Fig. 7 .  Shock-wave density-profiles, for Q = &( M), compared with experimental 
data for argon obtained by Schmidt (Ref. 11); theory based on Pr = 2/3, 
y = 5/3, and p T 3/4 
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Fig. 8. Shock-wave density-profiles, f o r  Q = Q(M), compared with experimental 
data for argon obtain d by Schmidt (Ref. 11); theory based on Pr = 2/3, 
y =  5/3, and p ,T 374 . 
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